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Asymptotics of the Interband Light Absorption
Coefficient near the Band Edge for an
Alloy-Type Model
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We find the asymptotics of the interband light absorption coefficient of an alloy-
type model in the case when the ground-state energies of the electron and the
hole Hamiltonians are finite.
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1. INTRODUCTION

In this paper we continue to study the interband light absorption coef-
ficient (ILAC) (see papers Kirsch and Pastur,(5) and Khoruzhenko, Kirsch,
and Pastur(2) for previous results). The ILAC is an important charac-
teristics of semiconductors, which in a certain approximation can be
defined as follows.

Let V w (x ) be an ergodic field in Rv and H±w = -1/2A±Vw are the
Schrodinger operators acting in L2(RV). Denote
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Definition 1. Let

Here p(t, x) denotes ( 2 n t ) - v / 2 e x p ( - \ x \ 2 / ( 2 t ) ) . Et,x
0,0 is the expectation for

the Brownian bridge B ( s ) with starting time 0, end-time t, starting point 0
and end-point x. Et,x

0,0 denotes the corresponding expectation for B ' ( s ) ,
E means the expectation for V+

w, V-
w.

In this article the asymptotics of the ILAC are estimated for the
following alloy type potential:

For its Laplace transform we get (Kirsch(3), Chapter 10)

Now we define the ILAC by

where ( . , . ) is the inner product in L2(RV). Eg is the distance gap between
the valence and the conduction band. A+

n and qx± are the eigenvalues and
orthonormalized eigenfunctions respectively of the operators HA

+, which
denote H+

w restricted to the cube A with appropriate (e.g., Dirichlet)
boundary conditions. These Hamiltonians describe the motions of electrons
and holes in the conduction and valence bands under the influence of the
random (impurity) potential Vw. The energy levels A+

n are counted from
the bottom of the respective band. For simplicity we consider only the case
of equal effective masses of electrons and holes. The absorption of light of
frequency /, i.e., of photons of energy E = hf, by the semiconductor is
possible only if
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Where v denotes the dimension of space, £i are integrable i.i.d. random
variables with

and there are constants C, N>0 , emin,emax such that4

For simplicity let / bounded.
Then we call Vw an alloy type potential.

We have to differ two types of alloy type potentials.

Definition 2. We say that an alloy type potential Vw :=
L i e z v £ i f ( x - i ) has

1. slow decay, if

2. fast decay, if

For these alloy type potentials Vw, the groundstates E+
0 of

are both bigger than — i. This is in contrast to the models considered in
ref. 5.

4 { m i n := in f{ r |P ( ( - i , r ]>0)} ,{ m a x = sup{r |P([ r , i)>0|}, where P denotes the prob-
ability distribution of the {,.
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We state

Theorem 3. Let A(A) the ILAC of an alloy type potential. Then

in the case of slow decay.

in the case of fast decay.

The result is in accordance with the conjecture (Kirsch(3), Section 10.4)

where A(t) denotes the Laplace transform of the ILAC and N±(t) the
Laplace transforms of the integrated density of states IDS of H*. The
asymptotics of the IDS N ± ( A ) of Hw

+ is determined directly in the article
by Kirsch and Simon(7) (observe the following section).

The connection between the ILAC A (A) or rather the IDS N(A) and
their Laplace transforms is given by the tauberian theorems in
Fukushima.(1)

2. PREPARATION AND SOME NOTATION

First split the potential



must be estimated (Kirsch,(3) Chapter 10). In ( 1 1 ) C0 is the unit cube
{xe Rv | 0<xi< 1, i= 1,..., v}. We need the integral over C0 here because
Vw is only Zv-ergodic (Kirsch(4) ).

The reason why in the above formula V+
0,u and V-

0,u are written
instead of Vmin,u and Vmax,u is that the Tauberian theorem only gives a
correspondence between the asymptotics with t —> i for the Laplace trans-
form and with A J 0 for the respective right continuous function while we

Then

We set for abbreviation

and observe (Kirsch(3), Chapter 6)

So V+
w are non negative and bounded. Now define for Va

b with

1177Interband Light Absorption Coefficient for Alloy-Type Model



1178 Kirsch et at.

are interested in the asymptotics of A(X) with AJ, (E+
0 + E-

0 ). (E+
0 + E-

0 ) is
not necessarily equal to zero. Therefore we wrote A# instead of A.

3. THE UPPER BOUND

Theorem 4. There exists

case of slow decay a constant c1(a) >0, such that

case of fast decay a constant c1 > 0, such that

Proof. We start with

where H+
A denote the Operators H+

w restricted to the cube A with Dirichlet
boundary conditions. By the Holder inequality for traces (Simon,(11)

Theorem 2.8) we get because of the semigroup property of e-tH+A

By taking expectations and using the Holder inequality we get

Now dividing by \A\ and putting lim supA t R v on both sides we arrive at
(Kirsch,(3) Chapters 9 and 10)

Multiplication with et(E+0+E-0) leads to
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where N + ( t ) denote the Laplace transforms of N ± ( A — E + ) . By
Kirsch/Simon(7) we know

in the slow decaying case and

for an alloy type potential with fast decay. An application of a Tauberian
theorem leads to

respectively

With (14) we reach at the desired result. |

4. THE LOWER BOUND

Theorem 5. In the case of slow decay

holds. If in addition

is fulfilled, there is a constant c 2 (a )>0 with

In the case of fast decay we get

respectively

with some positive constant c2 if (18) is fulfilled.



How far we may do this shows

Proposition 6. Let B(s) be a Brownian motion started in zero and
P its probability distribution. If a(t) >0 is a monotonically increasing func-
tion, there are two constants c3,c4>0 depending only on the dimension
such that for all t > 0

for some y. The proof for the deterministic part does not depend on the
behaviour of decay. The reason why we cannot improve the lower bound
in the case of fast decay is Lemma 12 or rather Proposition 11 in the proof
for the deterministic part. This means that in the case of fast decay we have
a combination of the contributions of potential (random) and kinetic
(deterministic) energy.

Before we prove Theorem 5 we give a short description of the idea for
the solution in the next subsection.

4.1. Motivation of the Solution

The first goal for the decisive random part of the expression ( 1 1 ) is to
make the potentials in the integral

\ ' ( V w , u ( B ( s ) ) + V -
w , u ( B ' ( s ) ) ) d sJo

independent of s small, in order to replace the integral t
0 • • • ds by the factor t.

For this we restrict the domain of integration of the integrals

It suffices to prove the theorem in the case of slow decay. For the
proof in the case of fast decay we first estimate A # ( t ) from below by
replacing in V+

w f by f+ g, where g is a bounded, not negative C i-func-
tion with

Kirsch et al.1180
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By construction

holds, where Pt,y denotes the probability distribution governing the
Brownian bridge B(s) with starting time 0, end-time t, starting point 0 and
end-point y.

For a proof see, e.g., Kirsch,(3) Section 9.5, Lemma 3.
Proposition 6 allows to restrict the domain of integration for the two

Brownian bridges such that they do not leave for nearly the whole time t
the balls with radius t1/a centered by their starting point 0 respectively x,
to make sure that the remaining part of the probability has still the desired
asymptotic.

By a suitable restriction of the domain of integration over dx we may
suppose that the two balls even with doubled radius do not overlap. This
is necessary as the random variables £i

+ and £-
i belonging to the potentials

vt,u respectively V-
w,u are coupled. If £i

+ is very small in the interval
[£min, Cmax] then £i

- is very big there and vice versa.
Both potentials V+

 w,u and V-
w,u are defined in a way, that one has at

each point i of the lattice Zv a random charge represented by the random
variable £+

i respectively £-
i whose potential decays from the point / accor-

ding to the function / When we force the Brownian bridge B(s) for the
potential £+

w,u to remain nearly the whole time t in the ball Kt 1/a, we can
govern the magnitude of the sum of the potential as follows: For each
lattice point i "near" the starting point of the Brownian bridge you maxi-
mize / by M and force by restricting the domain of integration of E the
respective £i

+ to be small. For those points which are "far" away from the
starting point of the Brownian bridge one maximizes £+

i by Emax — £min.
Then the magnitude of this part of the sum is determined by the decay of
the function /

The details follow in the next section.

4.2. Estimate for the Random Part

Lemma 7. There are two constants c5, c6>0 and a positive func-
tion C(t) with
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such that

where

and

In the case of (18) C ( t ) is a positive constant.

Proof. I. By restriction of the domain of integration we get

In the following steps we estimate (25) under consideration of the restricted
domains of integration.

II. For the expectation value (25) we have indepent of the
magnitude of B ( s ) and B ' ( s )

So it remains to estimate (*) from below.



and analogous for f'0 '** V w , u ( B ' ( s ) ) ds.
Observe that because of the restriction of the domain of integration

over dx in I. The i with \i\ <2t1/a are all different to those with
/i — x\<2t1 /a . Thus the random variables £+

i ,£-
i with these indices are

independent and one has

IV. In (28) we restrict the domain of integration of the expectation
value E to the set

This leads to

as the participated random variables are independent.

1183

III. First from monotone convergence we know
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V. Now we estimate the first integral in (29) from above. Because of
the assumptions

one has

Therefore for t big enough there are constants k1, k2, k3, k4 > 0 depending
only on the dimension with

The estimate for the second integral is the same. We only need to
replace B ( s ) by \B ' ( s ) - x \ .

Summarized we get

4.3. Estimate of the Determistic Rest of the Integral

In this subsection we show that the integral left behind in Lemma 7
has still the asymptotics sufficient for Theorem 5. Because of Proposition 6
we cannot expect to estimate by weaker asymptotics. Thus we have to
estimate sharply. Therefore this problem is uncomparably more delicate
than for the upper bound.

First we put the integral in a manageable form.



5 The integration over dx in Lemma 7, (23) is just restricted to this set.

Proof. This is just an application of the Chapman-Kolmogoroff
equalities.

As the Brownian bridges are continuous we get the domains of
integration {y\ \y\ <t1/a} respectively {z | \z-x\ <t1/a}.

The Feynman-Kac-formula leads to

Lemma 9. There is a constant c7>0, such that for t big enough
and5

1185
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the expression in Lemma 8 is bigger or equal than

With

we denote the (continuous) kernels of the operators e - ( t - t 1 / a ) ( H + 0 , u ) D .

(Ho Jo* represent the operators H-
0,u respectively H+

0,u restricted to the
balls

respectively

with Dirichlet boundary conditions.

Now to fulfil the proof of theorem 5, it suffices to estimate the integrals
over the kernels (33) and (34) independent of x and u from below.

The first important step is

Proposition 10. Let V be a Zv-periodic potential with V<M,
such that the Schrodinger operator

has ground state zero. If Hr,x0
D denotes its restriction to the ball

x 0 eR v with Dirichlet boundary conditions, then its spectrum is discrete.
For its in L2 normed groundstate eigenfunction denoted by pr,x0 belonging
to the eigenvalue Ar, x0 the following is valid:



In the next proposition 11 the velocity of convergence to zero of Ar Xo for
r —> i is shown. Hence the result. |

For the estimate of the eigenvalues A r , X 0 we need

Proposition 11. Under the assumptions of proposition 10 there
exists for given V a constant c8 > 0 only depending on the dimension with

and by the spectral theorem and (35) we get

with some constant k1 >0 only depending on M. By the Feynman-Kac-
formula one has

only depending on the dimension and M.

Proof. First we get by the Feynman-Kac formula the strict
positivity, boundedness and continuity of the kernel of e-sHr,x0

D.
Therefore e-sHr, x0

D maps functions in on continuous ones. By the
spectral theorem 1 follows.

2 is an immediate consequence of Reed and Simon(9), Theorem
XIII.44.

We are left to show 3. The following estimate is valid independent of
x0 and r.

Let h an arbitrary not negative function normed in L2. Then by
Simon(12) proof of Theorem B.1.1 we get

1. It can be assumed to be continuous and this is assumed in the
following.

2. It can be chosen strictly positive on the (open) ball Kr(x0) for all
r > 0 and is assumed to be in the following.

3. It is under the assumptions 1 and 2 independent of x0 and r, for
r big enough, bounded from above by a constant

1187Interband Light Absorption Coefficient for Alloy-Type Model
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Proof. This follows by Kirsch/Simon(7) corollary to Proposition 5
and Reed/Simon(9), XIII. 15. |

Now we are able to proceed in the estimate of the product of (33) and
(34). We denote by

the groundstate functions normed in L2 of the operators (H+
0,u)D

t 1/a respec-
tively (H-

0,u)
t1/a

D with belonging eigenvalues

By Proposition 10, the spectral theorem and Propositon 11 we get

Hence we just proved

Lemma 12. There are two constants c9, c1 0>0 with

The last thing to show is that the eigenfunctions do not decay too fast
to zero in the center of the ball of their domain.

Theorem 13. Let H : = -1/2A + V be a Schrodinger operator with
groundstate zero on Rv. Assume V to be a Zv-periodic function, such that
there exists a constant M with | V\ < M. Denote by Hr,x0

D the operator H
restricted to the ball Kr(x0) with Dirichlet boundary conditions, so for its
(continuous and positive) groundstate eigenfunction t j r , x 0 normed in L2 in
the center x0 there is a positive constant c11 with

for r big enough.

Proof. I. By combining the three theorems 3.3, 4.7 and 4.10 from
Simader(10) we get6 that for r big enough and R small enough there exists
n0eN independent of r and R with

for all x 0 e K ( r - 6 4 R ) and \x — x0\ <R/n0 .
6 Also for v= 1.



IV. As jr is continuous on Kr and the closure of K r _ e ( r ) denoted by
Kr_e(r) is compact, pr restricted to this closed set takes there its minimum

That just means

Then for r big enough (39) is fulfilled for all x0e Kr_e(r) and |x- x0|< p(r).
It follows

and

III. Define

As for some positive constant k1 we get \K r\K r_e ( r )\ < k 1 r v - 1 e ( r ) for r big
enough we set

Thus for (40) it suffices to require

Because of \ \ t r \ \L
2

( K r ) = 1 and Proposition 10, 3 we have

II. We want to determine a function e(r) such that

Interband Light Absorption Coefficient for Alloy-Type Model 1189
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and maximum. Denote these points in K r _ E ( r ) by xmin, r respectively xmax, r.
Obviously we have

Therefore to cover the straight line from xmax, r to xmin, r by open balls
Kp(r)(Xi), such that \x i-x i_1 \ < p ( r ) , x i € K r _ e ( r ) for all i, 2r/p(r) =
(128n0/k2) rv balls are sufficient. Thus by (43)

V. The maximum of the function dr on Kr_E(r) is not smaller than the
value of the constant function which satisfies (40). Thus

Together with (44) this leads to

and therefore to the assumption. |

With this Theorem 5 is completely proved.
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